Editor's note: The following article was written by Anne Ju, staff writer for Cornell University's Cornell Chornicle. Click here to access the original article.

The dog days of summer can be brutal for cows. When dairy cattle get too hot, it means reduced milk production, decreased reproductive activity and sometimes death – and for dairy farmers, lost income.

To help farmers keep cows cool, Cornell engineers are collaborating on a multidisciplinary research project supported by the New York State Energy Research and Development Authority (NYSERDA) that could provide an alternative to the fans, misters, sprinklers and other heat mitigation strategies typically used.

Conductive cooling refers to heat transfer through direct contact between surfaces of different temperatures; the concept of conductively cooling cows was previously studied by Kelley Bastian, a former graduate student of Kifle Gebremedhin, professor of biological and environmental engineering. Kristy Perano, a current graduate student with Gebremedhin, is now developing and validating the concept further to determine whether conductive cooling with chilled mats underneath cows have measurable effects on their heat stress levels, milk production and overall health.

“A lot of people in the Northeast just use fans for their cooling systems,” said Perano, who grew up on a beef cattle ranch in California. “In the west and south there are significant problems with heat stress, and with global warming you could have more problems here.”

For the NYSERDA project, they are teaming with graduate student Joe Usack, and his adviser, Lars Angenent, associate professor of biological and environmental engineering, who is the project’s principal investigator. They are testing the feasibility of waste heat capture from a biogas generator as the power source for such a conductive cooling system. The project also includes Curt Gooch, senior extension associate with the PRO-DAIRY program in animal science.

Read more.